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ABSTRACT

We present a novel approach to anomaly detection in Bayesian networks, en-
abling both the detection and explanation of anomalous cases in a dataset.
By exploiting the structure of a Bayesian network, our algorithm is able to
efficiently search for local maxima of data conflict between closely related vari-
ables. Benchmark tests using data simulated from complex Bayesian networks
show that our approach provides a significant improvement over techniques
that search for anomalies using the entire network, rather than its subsets. We
conclude with demonstrations of the unique explanatory power of our approach
in determining the observation(s) responsible for an anomaly.
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Anomaly Detection and Attribution Using Bayesian
Networks

Executive Summary

Anomaly detection techniques allow us to identify and investigate cases in a dataset which
are inconsistent with the remainder of that dataset. This is an important and valuable
technique, allowing us to find incorrect sensor readings, or to detect suspicious activity
in observations of ordinary behaviour. The anomaly detection techniques considered here
are not rule based. They detect any case which does not follow the dominant patterns of
behaviour observed in the dataset, rather than searching for a specific anomalous pattern.
The advantage of this is the potential detection of a wide variety of anomalous behaviour.
The downside is that detections require further analysis by human operators to explain the
reason for the anomaly. We propose a novel approach to anomaly detection which exploits
the inherent structure of Bayesian networks to consider only the observations which are
actually responsible for an anomaly. This approach, which was tested against AIS data on
Sydney Harbour, allows our algorithm to not only ignore non-anomalous information, but
also to explain the cause of an anomaly to a human operator. Further, it has demonstrated
the ability to pick up injected anomalies and provide an explanation to the operator.
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1 Introduction

Underlying every issue in statistical reasoning is the assumption that the data being ex-
amined was generated by the same underlying process which our statistical models are
designed to represent. The accuracy of a model compared to the process it represents is
irrelevant unless we are considering data which was indeed generated by the same process.
When this assumption fails for a given piece of data, that data is called an outlier, or
an anomaly. Anomalies represent a crucial challenge in all areas of machine learning and
statistics. Anomalies in a training set can compromise the validity of the resulting model
and anomalies in data being fed into a forecasting model can lead to incorrect predictions.
Anomalies are regularly a topic in their own right in the field of data mining, where we
are interested in searching a dataset for anomalies for the purpose of finding data which
appears to have been generated by a different process to the rest. This topic has attracted
considerable attention in recent years, with anomaly detection being used to detect po-
tential credit card fraud in financial transactions and disease outbreaks in medical data,
to give some examples. A comprehensive review of existing anomaly detection techniques
and applications can be found in [6].

The reasoning behind the power of anomaly detection in these cases is simple but
powerful. It would be difficult if not impossible to build a model of how identity thieves
use stolen credit cards, and searching for this behaviour directly would be futile. However,
it is highly unlikely that they would behave identically to the true owner of the card.
Using anomaly detection, we can determine which transactions are being generated by a
different process (i.e. a different user), without having to specify what that process is. The
techniques used for anomaly detection are many, varied, and complicated, and it is not our
intent to detail them all here. As a brief treatment, most techniques consist of representing
all observations in the Hilbert space of their variables, and using some distance or density
measure to cluster them and return the smallest clusters as anomalies.

1.1 Bayesian Networks for Anomaly Detection

The techniques we are concerned with here all pertain to Bayesian networks (BNs). Intro-
duced in [21] and codified in [22], BNs are a directed, acyclic graphical model, with evidence
propagation governed by Bayes’ theorem [16] (1). BNs are inherently robust to missing
information, are better suited to categorical information than distance based classifiers
[1], and their encoding of conditional and unconditional independence makes them highly
efficient for calculating joint probability distribution functions in high-dimensional spaces
[3]. Most importantly, BNs have a structure and a representation that is immediately
understandable to human operators, even those who are not experts in machine learning,
whereas many other machine learning techniques are nearly totally opaque [13, 14]. This
structure allows us to model the flow of information through the network and thus trace
the causes of anomalies, and output them in a way that makes sense to a human operator
[2].

BNs represent each variable in a given dataset as a node in the network, denoted by a
capital letter X. A node can take any state x in its state space X . These state spaces are
usually discrete and finite, though techniques exist for directly incorporating continuous
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Figure 1: Demonstration of causal independence in BNs

variables in BNs, generally using Gaussian distributions [17] or using Gaussian mixtures
to approximate other distributions [8]. Nodes are connected by causal links, known as
arcs or edges, representing the causal dependence of one node on another. The notion
of conditional independence is central to understanding BNs. Consider the BN shown
in figure 1, adapted from the famous Asia BN [12] and implemented in the Netica 4.16
software package [7]. Figure 1b) shows that, absent any other knowledge, the fact that
a person is a smoker increases our belief that they will have an abnormal X-Ray result.
However, as figure 1c) and d) show, once we know that a person does not have lung cancer,
our belief on them having an abnormal X-Ray result is unchanged by our knowledge of
their smoking habits. We can that say that the nodes XRay and Smoking are conditionally
independent given Lung Cancer, also written as (XRay ⊥ Smoking)|Lung Cancer .

In a BN, nodes with no parents (such as Smoking in figure 1) are given prior probability
distributions over their states, based on our a priori beliefs about these nodes. A node
X with parents Y1, Y2, . . . , Yn has a conditional probability distribution CPD : Y1 × Y2 ×
· · · × Yn 7→ X , which gives beliefs about node X given the beliefs about its parents. The
distributions are governed by Bayes’ Theorem:

P (x|y) =
P (y|x)P (x)

P (y)
. (1)

As a consequence of being inherently causal, BNs capture three distinct methods of
information flow between nodes. Considering the case of figure 1c), we see that entering a
finding on the node Lung Cancer unsurprisingly changes our beliefs about XRay. Here, by
finding, we refer to having complete certainty regarding the state of a node. This causal
flow from a parent to a child is known as evidence propagation. However, this finding also
changes our beliefs in its parent, Smoking, as governed by (1). This reverse causal flow
is called inference. Lastly, consider a variation of figure 1 which includes Tuberculosis as
another parent of XRay. If we have a finding of “Abnormal” for the XRay node, then our
belief in “Present” for Tuberculosis will increase via inference. However if we then add a
finding of “Present” for Lung Cancer, ours beliefs for Tuberculosis will change again, as
the finding on Lung Cancer means that we are no longer looking for something to explain
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the finding of X-Ray. This is known as explaining away, and is of particular note because
while it may seem intuitive to humans, most machine learning techniques are unable to
perform this kind of reasoning.

Critical to the study of BNs are their junction tree decompositions [20]. Broadly
speaking, the junction tree represents the propagation of information in a BN, in an
undirected and noncyclical tree structure. This structure makes it easy to process, and
junction trees lie at the heart of many engines for solving BNs computationally. The
vertices of a junction tree are known as cliques, and each contain up to three nodes from
the BN. Neighbouring cliques share at least one node, which serves as the connection
through which information flows in the BN. Importantly, the fact that junction trees
are undirected means that they are non-causal, and represent propagation and inference
identically. An illustrative example of a junction tree is shown in figure 2.

Figure 2: An example of a junction tree decomposition

2 Existing Methods of Bayesian Network

Anomaly Detection

This report is not the first to discuss the topic of anomaly detection using BNs. However,
most existing research focuses on techniques for learning the network from the data, rather
than how to discriminate between anomalous and non-anomalous cases given the BN, and
almost all existing research uses one of the two scoring methods detailed below. Both of
these scoring methods classify anomalies based on the joint state of the entire network,
rather than restricting their examination to the information relevant to the anomaly. The
only example of a focused anomaly search we found in the existing literature was [2],
which looks for anomalous results by searching for conflicts between parent-child pairs
in the network. We note that this technique is severely limited in complex networks or
networks where many nodes do not have findings. Moreover, this approach is completely
unable to detect or explain more intricate anomalies arising from conflict between large
sets of nodes, rather than individual nodes, or explain more intricate anomalies arising
from conflicts between non-unit sets of data.
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2.1 Joint Probability

Intuitively, the definition of an anomaly as an unexpected event is a sensible one. Although
low-probability events can occur and be consistent with our model (else they would be
zero-probability events), they certainly give us reason to be suspicious. As an extreme
example, when in the midst of the 2007 US financial crisis, the Chief Financial Officer
of Goldman Sachs claimed “We are seeing things that were 25-standard deviation moves,
several days in a row,”[9] it was reasonable to conclude that the cause of the anomalies
was a model that had lost touch with reality, rather than a severe case of bad luck.

We take the approach of [13], and use the information-theoretic measure of self-
information I(x) = − log2 P (x) rather than the joint probability itself. The transformation
is strictly monotonic and thus has no effect on the actual classification of anomalies, but
it provides a more easily human-readable score, and we will continue to refer to the metric
as the joint probability.

2.2 Jensen’s Conflict Measure

In order to differentiate between improbable, but internally consistent data and conflicting
data, [10] introduced the conflict measure. Its use in the context of anomaly detection
was discussed in [14]. For a set of observations e = {x1, x2, . . . , xn}, the conflict measure
is defined as

conf(e) = log2
P (x1)P (x2) · · ·P (xn)

P (e)
, (2)

where the terms in the numerator are the marginal priors of the model, before any evidence
is entered. Importantly, the observations x1, . . . , xn do not necessarily indicate observa-
tions on a single node, but may themselves be sets of evidence similar to e. By including
the naive probability for each observation or set thereof, as well as their joint probability,
we are essentially testing against the expected correlation in our data, rather than sim-
ply its probability. The idea of using the conflict measure to trace sources of anomly is
mentioned in [11], where the authors note that the fact that the conflict measure can be
applied between sets of nodes rather than only individual nodes means that it can be used
to search over partitions of the network, in order to locate the source of the conflict.

3 The Conflict Localisation Algorithm

Jensen’s conflict provides a way to normalise the joint probability in subsets of the network
and so compare conflict within these subsets. This, in turn, allows us to to find local
maxima of conflict in the network, and isolate ‘sources of conflict’. We expect these
local maxima to provide a better means of anomaly detection by searching for anomalies
directly, and not getting ‘distracted’ by parts of the network not immediately relevant to
the anomaly at hand. Besides the pair-search technique in [2], who do not know of any
existing methods with this property. Moreover, the detection of local maxima provides
us with a means of expressing the nature of the anomaly to a human operator for further
investigation. Existing classifiers can flag an observation as anomalous, but a report of
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“the fifty variables in this case conflict with each other somehow” is far less valuable to
a human than the output of our method, which provides a report of exactly where the
conflict is located and which observations are most likely to be responsible.

We propose the Conflict Localisation Algorithm (CLA) as a computationally efficient
method to both detect and explain anomalies in BNs. Inspired by the idea of ‘tracing’
conflict through the junction tree, detailed in [10, 11], the CLA is a multi-stage optimiza-
tion algorithm, designed to exploit the existing structure of a Bayesian network in order
to efficiently find local maxima of the Jensen conflict measure within the network. By
finding local maxima, we not only overcome the issue of our anomaly classifier becoming
‘distracted’ by non-anomalous behaviour in other parts of the network, we are also able
to directly report the source of the anomaly to a human operator. The algorithm works
by first selecting cliques from the junction tree (CLA Part 1) to be passed to the second
stage (CLA Part 2), where only the internal cliques above the mean are kept, and then
it optimises these cliques (CLA Part 3) by finding the ‘conflict set’ of neighbouring nodes
with the greatest conflict between them. CLA Part 1 is shown in algorithm 1.

Algorithm 1 The Conflict Localisation Algorithm, Part 1

1: procedure Main(junctionTree)
2: internals←FindStart(junctionTree) . This will be explained later
3: branchedTo← ∅
4: topScore← 0 . Largest optimised conflict
5: topSet← ∅ . Conflict set with largest optimised conflict
6: optScore← ∅
7: optSet← ∅ . Dictionary of form dict[key] = value
8: for all clique ∈ internals do
9: if clique /∈ branchedTo then

10: optScore[clique], optSet[clique]← Optimise(clique,0,None) . This will be
explained later

11: branchedTo← branchedTo ∪ optSet[clique]
12: if optScore[clique] > topScore then
13: topScore← optScore[clique]
14: topSet← nodesIn(optSet[clique]) . Save the nodes in the set of cliques
15: end if
16: end if
17: end for
18: return topScore, topSet
19: end procedure

3.1 The Starting Stage

In the first stage, the algorithm exhaustively searches over the junction tree corresponding
to the network, calculating the Jensen conflict measure within each clique, as shown in
algorithm 2. Note that because all nodes in a clique are directly connected, the flow of
information and the calculation of the Jensen conflict measure is extremely simple within a
clique, allowing us to search exhaustively without having to worry about the computational
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burden. Since every edge in the network is contained within a clique we know that the
‘frontier’ between two conflicting sets (which may be single nodes, or larger collections
of nodes) will exist within a clique, and thus the internal conflict of cliques should be a
good way to find these conflicts. Multiple rules could be used for choosing which cliques
to optimize over, we chose to find the mean of the internal conflict of cliques, and discard
any clique with an internal conflict below the mean.

Algorithm 2 The Conflict Localisation Algorithm, Part 2

20: procedure FindStart(junctionTree) . Takes in junction tree with observations,
returns cliques with internal conflict above the mean

21: internals← ∅ . Dictionary of form dict[key] = value
22: for all clique ∈ junctionTree do
23: internals[clique]← conf(clique)
24: end for
25: avg ← mean(internals)
26: for all scores ∈ internals do
27: if score < avg then
28: remove score
29: end if
30: end for
31: internals← order(internals)
32: return internals
33: end procedure

3.2 The Optimisation Stage

The optimisation stage uses a recursive, hill climbing approach that searches for the ‘con-
flict set’ of nodes which give rise to local maxima of conflict within the junction tree.
Although the result of this stage of the algorithm is a set of nodes, we are still using the
junction tree structure, so this conflict set is built by searching over cliques, and when we
say that ‘a clique is added to the conflict set’ we really mean that ‘the nodes from the
clique are added to the conflict set’. From a single staring clique, the optimiser tries to
find a local maximum by searching over all neighbouring cliques in the junction tree, and
checking if the confict measure of the observations contained within this new, larger con-
flict set is greater than the conflict measure of the observations in the previous conflict set.
The neighbouring clique which gives the greatest increase in the conflict measure is then
added to the set. This process continues as described in algorithm 3 until no neighbouring
cliques increase the conflict measure, and the algorithm returns the current conflict set as
a local maximum.

Searching over neighbouring cliques in the junction tree is not only computationally ef-
ficient (as it vastly narrows the search space, and the simple evidence propagation between
neighbouring nodes makes computing the conflict measure easy), it has the important ben-
efit of having an intuitive correspondence to the nature of conflicts. By definition, nodes
which are related should be connected to each other in the network, and thus in its junc-
tion tree. The more distant a pair of nodes are, the more likely it is that a conflict between
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Algorithm 3 The Conflict Localisation Algorithm, Part 3

34: procedure Optimise(candidate, bestScore, confSetCliques) . Optimises from
candidate clique, given existing conflict set. Returns the local maximum of conflict,
and its associated conflict set.

35: if bestScore = 0 then
36: bestScore← conf(candidate)
37: end if
38: score← conf(candidate ∪ confSetCliques)
39: if score < bestScore then
40: return bestScore, confSetCliques . Return with no change if candidate does

not add to conflict
41: end if
42: bestScore← score . Update the maximum
43: confSetCliques← confSetCliques ∪ candidate
44: branches← connections(candidate) \ confSetCliques . Search space for next

candidate
45: while |branches| > 0 do
46: bestBranchScore← bestScore
47: candidate← None
48: for all test ∈ branches do . Search over all branches first to pick the best
49: branchScore← conf(confSetCliques ∪ test)
50: if branchScore > bestBranchScore then
51: bestBranchScore← branchScore
52: candidate← test
53: end if
54: end for
55: if candidate = None then
56: break
57: end if
58: bestScore, confSetCliques← Optimise(candidate,bestScore,confSetCliques) .

Recursively call on best branch
59: branches← branches \ candidate . Remove used branch from search space
60: end while . Return to search for second best branch
61: return bestScore, confSetCliques
62: end procedure

UNCLASSIFIED 7



DSTO–TR–2975 UNCLASSIFIED

them is a coincidence of correlation, rather than a disagreement that can be interpreted by
a human. This comes with an important caveat however, as it relies on the ‘true network’
for an anomalous finding having a similar structure (though not probability distribution)
as that of the non-anomalous findings used to build the network. As an example, in our
tests below we used simulated data, where the findings for multiple nodes were switched
with their findings from another case. This kind of simulation induces a relationship be-
tween these nodes which did not exist before, and is thus not captured by the network.
Although this specific type of relationship is unique to simulated data, it is not unreason-
able to anticipate real anomalies arising from similar database errors, or perhaps to have
some actual relationship between nodes which only exists in anomalous cases. In these
situations an anomaly will still be detected, but the CLA will not find the entire source.

In order to avoid redundancy, cliques that are included in any conflict set are removed
from the list of starting cliques returned by the first stage of the algorithm. If the optimiser
on clique α branches to clique β, representing a particular set of nodes in conflict, it makes
sense that the same optimiser on clique β will simply branch to clique α and return the
same result. Thus, by removing these cliques from the list of starting cliques we remove
this redundancy, improving computational efficiency and simplifying output for human
operators.

3.3 The Explanation Stage

A key advantage of the CLA over existing methods of anomaly detection is its ability
to efficiently identify the cause of the anomalous classification, and to concisely report
this information back to a human operator for further review. The CLA returns multiple
conflicting sets for each case (one for each clique used to start the optimiser), although
typically we are only interested in explanations for the few sets with the highest conflict.
In order to find conflicts as efficiently as possible, the CLA searches for sets with large
internal conflict within themselves. This means that the output of the CLA optimiser will
contain anomalous and non-anomalous observations. The reason for this is that conflicts
are between anomalous and non-anomalous data, not anomalous data alone. Whilst an
algorithm which simply identifies all the relevant information and passes it to a human
is certainly valuable, and a significant improvement over reporting the entire case, more
can be done to improve this. The explanation stage of the CLA works in two substages,
first identifying the internal ‘tension’ in the conflicting set reported by the optimiser, and
then using the rest of the network in order to determine which part of the conflicting set
is anomalous.

In order to identify the tension in the conflicting set we use another hill-climbing
procedure. For each node in the conflict set O ∈ ω, the CLA computes the conflict
between the candidate node and remainder of the conflict set conf(O,ω \ O), in order to
find the most conflicting node O∗. The conflict set is then broken down into two subsets
α = O∗ and β = ω \O∗. The CLA repeats this process recursively, searching for nodes in
β to move to α in order to maximise conf(α, β). When no such nodes can be found, and
we have a maximum of this conflict, the CLA returns α, β, and the conflict between them.
We expect that one of these subsets will contain the anomalous observations in ω, whilst
the other will contain the non-anomalous observations which the anomalous observations
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are in conflict with. We note that it is certainly possible for multiple different sources of
anomaly to exist near each other in the network, and that these may be better explained
by more subsets, but we leave the best way to do this as a topic for future work.

A partitioned conflict set is valuable to a human operator, but an ideal explanation
would identify which subset is the anomaly, and which is the evidence. Fortunately, we are
able to do this by checking which subset is consistent with the remainder of the network η.
We compute conf(α, η \ω) and conf(β, η \ω), and make the determination that the subset
with the greater conflict is the anomalous subset. Note that we explicitly do not consider
β when computing the conflict for α, and vice versa. This is because we explicitly want
to test against information that could not be part of the anomaly we are considering (else
it would have been included in ω by the CLA). As an added measure, we also report the
individual measures of consistency with the network for each node conf(X, η \ (ω \ X)),
which means X is in both measures. These scores have no effect on the actual processing
of the CLA in explaining anomalies, but are a helpful measure for human operators,
especially in the case of more complex anomalies.

4 Possible Variations of the Conflict Localisation

Algorithm

The specification we have given for the CLA is not the only possible way the algorithm
could be constructed, and it is not the only one we tried. It is however, in our experi-
ence, the best version of the algorithm for an arbitrary case, where we do not have prior
information regarding the size of the dataset, the structure of the network, or the nature
of the anomalies. We require that a ‘good’ construction of the CLA strike an appropriate
balance between:

1. Computational efficiency

2. Performance in detecting anomalous cases

3. Performance in attribution of anomaly sources

4. Ability to detect and explain complex sources of conflict

5. Avoidance of redundancy in explanations

The tradeoff between these desires is determined by where we start the optimiser, and
how it traverses the junction tree. Below, we discuss some alternative techniques for these
to parameters, quantify their advantages and disadvantages, and explain why we chose
the specification given above.

4.1 Starting Rule

Anomalies range from the simple case of a single node with an incorrect finding, to complex
cases of multiple large sets of nodes which are internally consistent, but conflict with
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each other. Nevertheless, all information in a BN must propagate along the edges of the
network, and all anomalies of any nature will ultimately give rise to a conflict between
two individual nodes, joined by an edge. As every edge is contained within some clique of
the junction tree, we expect that every anomaly source will give rise to at least one clique
with high internal conflict.

We note that it is certainly possible for many cliques with low internal conflict to
return a conflict set with a large conflict when fed into the optimisation stage of the CLA,
especially when we have complex anomaly sources. Indeed, figure 3, calculated from the
datset described in section 5.2, shows this behaviour, and seems to support the notion
that the relationship between internal and optimised conflict is extremely weak, if it exists
at all. However, we are interested in finding the highest scoring anomaly sources, not
in finding them as many times as possible, and not in finding every clique which could
optimise to a given source. With that in mind, we look to see if our starting clique rule
has any effect on the largest optimised conflict found for each case. Figure 4 compares
the OPTIMISE output for the above average initialisation described in section 3.1 with
the output using an exhaustive starting rule. The figure shows that the above average
starting rule suffers a minimal loss of performance in this regard, with 60% of optimised
conflicts being identical, and others being only slightly different. In our tests, we found
that the exhaustive starting rule was over 67% slower on average when compared to the
the above average starting rule.

Moreover, the above average starting rule had the qualitative benefit of producing
more easily readable explanations of conflicts (item 5 in the above list), as it started at
a location which was definitely part of the anomaly source. The exhaustive starting rule,
however, produced several reports of the same anomaly source, sometimes starting from a
non-anomalous clique which happened to be located next to the anomaly where it could
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Figure 3: Demonstration of low internal conflict cliques optimising to high conflict scores
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Figure 4: Effect of starting clique rule on largest optimised conflict found

optimise to it. The above average starting rule is certainly not the only possible alternative
to the exhaustive rule, but as it gave a satisfactory improvement in computational efficiency
and readability of explanations, without any noticeable decline in detection performance,
we did not devote time to investigating other possible rules.

4.2 Traversal

The standard specification of the CLA given in algorithm 3 returns to previous cliques in
order to search for second-best branches, which is certainly not the only possible technique.
We also tested CLA without returning past cliques which only searched along the most
promising branch (simply by eliminating the for loop at line 45 of the algorithm), a
technique which we called strict traversal. Figure 5 shows the highest scoring optimised
conflict for each case in the dataset from section 5.2, as found by strict traversal and by
standard traversal. Whilst the standard traversal technique only found a different largest
optimised conflict in 15% of cases, these results still give us considerable reason to prefer
the standard traversal technique.

Firstly, there is considerable heteroskedasticity in these results. To be precise, it is in
the cases with large optimised conflicts that we see large differences in the results from the
two traversal techniques. This is a concern because it is these cases (the anomalous ones)
that we are interested in. On the other hand, the two techniques tend to agree in the
majority of low-conflict, non-anomalous cases, the ones we’re not particularly interested
in. Secondly, the (sometimes large) differences in conflict shown in figure 5 indicate that
the standard traversal technique is finding additional cliques, particularly ones making
large contributions to the optimised conflict, that the strict algorithm is not. This means
that even when the strict traversal technique is able to find anomaly sources, it is not able
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Figure 5: Effect of traversal technique on largest optimised conflict found

to report the entire set of observations responsible for the conflict to a human operator.
This effect will be amplified in the case of complex conflicts (where the second best branch
is likely to be important), where it is most important that the algorithm be able to report
the full source of the anomaly to a human operator for interpretation.

In all our tests, the use of the strict traversal technique saved less than ten seconds
in searching 200 cases, an efficiency saving which we decided did not justify the loss of
performance in other key areas. However, we do note that large, complex networks may be
able to benefit from a hybrid approach, exploiting the heteroskedasticity noted above so
as to only call the standard traversal on cases which have passed a certain score threshold
whilst using strict traversal. Finally, we also tested an exhaustive traversal technique,
which searched over every clique at every stage. However, this technique not only suffered
from severe computational inefficiency (taking over one hundred times as long as the
standard technique), it also returned significantly less concise and intuitive explanations
of conflict, whilst providing only a small gain in detection performance.

12 UNCLASSIFIED



UNCLASSIFIED DSTO–TR–2975

5 Tests of Anomaly Detection

In order to test the performance of the CLA, we used simulated data from an existing
BN built for Maritime Anomaly Detection (MAD). This network was learned from real
world data collected from Automatic Identification System (AIS) transmissions from ves-
sels in and around Sydney harbour, following the procedure in [13, 14], and was built
using software provided by Bayesian Intelligence Pty Ltd, under contract from DSTO.
The AIS system publicly reports both dynamic (e.g. latitude, longitude, speed) and static
(e.g. ship type, nationality, size) information in a standard format set by the Interna-
tional Convention for the Safety of Life at Sea. Before learning the model, the data was
discretized using the Snob software package [19], which discretised continuous data using
Minimum Message Length scored finite mixture models. The structure and conditional
probability distributions were then learned using the Causal discovery via Mixed Message
Length (CaMML) software [23]. The resulting model contained 52 nodes, 94 edges, and a
total of 11446 conditional probabilities. Various anomalous detectors were used including:
the self-information (i.e. joint probability) of the entire case; the Jensen conflict measure
of the entire case; and the largest local maximum of conflict in the case, as reported by the
CLA. In order to extend the analysis in section 4 we also tested variations of the standard
CLA. However, none of these CLA variations had a statistically significant difference in
performance when compared with the standard CLA in any test, and the results are not
reported below for the sake of conciseness.

5.1 Techniques for Evaluation of Classifier Performance

The CLA, as well as the existing methods for classification detailed above, map from the
set of cases into R, assigning a score to each case. In order to turn these scores into a
decision result of anomaly or not anomaly, we set a threshold T and rule that all cases of
with a score greater than T are anomalous, and the inverse. Classification performance
was measured using the Receiver Operator Characteristic (ROC), which is independent of
T , and by the F1 score, the Matthews Correlation Coefficient [15], and Youden’s J statistic
[24], each of which depends on T .

5.1.1 Receiver Operating Characteristic

The ROC of a classifier is a graphical representation of the tradeoff made by lowering
T . Specifically, the y-axis shows the proportion of actual anomalous cases which are
detected (also known as sensitivity) given the proportion of non-anomalous cases which
are registered as anomalous given T . The self-explanatory Area Underneath the Curve
(AUC) is a prevalent metric in the machine learning community for measuring the overall
performance of a classifier, independent of T . A ‘blind classifier’ which simply knows the
proportion of cases which are anomalous and classifies at random will have an AUC of 0.5,
whereas a perfect classifier which detects every anomalous case before detecting a single
non-anomalous case will have an AUC of 1. Selecting T as the threshold value associated
with the point on the curve closest to the point (0, 1) in the ROC space is common practice,
and it is this value of T we will use for our remaining metrics. All ROC curves used in
our research were computed using [4].
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5.1.2 Confusion Matrix

At any given value for T , the performance of a binary classifier can be represented as
a confusion matrix of the form shown in table 1. The acronyms TP, FP, FN, and TN
stand for True Positive, False Positive, False Negative, and True Negative, respectively.
By showing all these values, the confusion matrix provides us with an instant overview of
the performance of the classifier at a given T .

Table 1: Confusion matrix for a binary classifier

Reported Class
Anomalous Non-Anomalous

Actual Class
Anomalous TP FN
Non-Anomalous FP TN

5.1.3 F1 Score

From the confusion matrix we can easily calculate the precision (the proportion of cases
which the classifier considers anomalous that are actually anomalous) and the recall (the
proportion of actually anomalous cases which are detected by the classifier) of the chosen
classifier at a given T , given by

TP

(TP + FP)
and

TP

(TP + FN )

respectively. The F1 score is then given by the harmonic mean of these two values, and
is a widely used metric for measuring the ability of a classifier to detect anomalous cases.
Note that unlike the metrics below, the F1 score does not take the true negative rate of the
classifier into account. The F1 score can be calculated directly from the confusion matrix
as

F1 =
2 · TP

2 · TP + FP + FN
. (3)

5.1.4 Matthews Correlation Coefficient

The Matthews Correlation Coefficient (MCC)[15], sometimes known as the phi coefficient
is another canonical performance metric for binary classifications, and essentially measures
the correlation between the actual classes and those produced by the classifier. As we
would expect from a correlation, a score of +1 means we have a perfect classifier, a score
of 0 is equivalent to classifying at random, and a score of −1 means we have a perfectly
wrong classifier (which, of course, could simply be inverted to give a perfect classifier).
The MCC is calculated from the confusion matrix as

MCC =
TP · TN − FP · FN√

(TP + FP)(TP + FN )(TN + FP).(TN + FN )
. (4)
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5.1.5 Youden’s J Statistic

Youden’s J statistic [24] is equivalent to the partial AUC to the left of T , and is calculated
from the confusion matrix as

J =
TP · TN − FP · FN

(TP + FN )(FP + TN )
. (5)

Youden notes that the J statistic has a binomial distribution with variance

σ2J =
TP · FN

(TP + FN )3
+

FP · TN

(FP + TN )3
, (6)

and that given the asymptotically normal behaviour of the binomial distributution, J
statistics for different classifiers may be compared using a standard t-test, provided we
have a sufficient (> 20) number of cases.

5.2 Multiple Sources of Anomaly

In order to test detection in the scenario where cases had multiple sources of anomaly,
we simulated 200 cases from the existing BN, 40 of which were anomalous. Anomalous
cases were generated by selecting eight variables at random (the same eight for all cases)
and switching their values with the values of another case in the simulated dataset. The
ROC curves for the different classifiers are shown in figure 6 and their various performance
metrics are shown in table 2.

Table 2: Performance metrics for classifying multiple sources of anomaly

Classifier Time (s) AUC F1 MCC J Statistic

Joint Probability 34 0.92±0.030 0.72 0.69 0.62
Total Jensen Conflict 73 0.95±0.023 0.86 0.83 0.79
CLA 187 0.94±0.027 0.80 0.76 0.69

As we can see, where we have multiple anomalies the classifiers perform close to equally
well. In fact, we did not find a statistically significant difference between any pair of
classifiers for any of the metrics used, though all three classifiers performed well. Thus,
we fail to reject the null hypothesis that these whole-network techniques and the CLA
are equally well suited to anomaly detection in the case where the number of anomalous
findings is large relative to the number of nodes in the network.

5.3 Single Source of Anomaly

In order to test the ability of the CLA as well as existing measures in finding a single
anomalous entry in a case, we used the same simulated set of 200 cases as above. We
generated ten anomalies by switching the observations of the ShipType node with other
cases in the simulated dataset. Again, we used the self-information and Jensen conflict
measure as classifiers, as well as the largest conflict reported by the CLA. The ROC curves

UNCLASSIFIED 15



DSTO–TR–2975 UNCLASSIFIED

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate (1−Specificity)

T
ru

e 
po

si
tiv

e 
ra

te
 (

S
en

si
tiv

ity
)

ROC Curves for Multiple Anomalies

 

 

Joint Probability
Random classifier
CLA
Total Jensen Conflict

Figure 6: ROC curves for multiple sources of anomaly

Table 3: Performance metrics for classifying a single source of anomaly

Classifier Time (s) AUC F1 MCC J Statistic

Joint Probability 38 0.69±0.095 0.23 0.15 0.07
Total Jensen Conflict 82 0.68±0.095 0.20 0.19 0.10
CLA 193 0.89±0.069 0.29 0.33 0.16

from the classifiers are shown in figure 7 and their performance metrics are shown in table
3.

Here we see the benefit of the CLA. Not only does the CLA significantly outperform
the other classifiers in all performance metrics, it also suffers from minimal loss of perfor-
mance when compared to the multiple anomaly case. A hypothesis test using the Student’s
t-distribution shows that, compared with the joint probability and Jensen conflict classi-
fiers, the CLA here performs significantly better in AUC, with 1.67σ and 1.72σ distances
respectively. Importantly, when compared to their performance on the dataset with mul-
tiple anomaly sources, the joint probability and Jensen conflict classifiers experienced a
standardised loss of 2.34σ and 2.76σ in the AUCs respectively, both highly significant
changes in performance, whereas the performance of the CLA dropped only 0.667σ. We
expect this result to be even more pronounced in larger networks.
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Figure 7: ROC curves for a single source of anomaly

6 Tests of Anomaly Attribution

The data above supports our hypothesis that the CLA provides a better approach to
anomaly detection against existing methods. However, the true power of the CLA is its
capacity for explanation. The ability of the CLA to accurately determine the variables
in a case responsible for its anomaly status as well as the most relevant non-anomalous
evidence is crucial for humans investigating these anomalies, and is unique to the CLA.

6.1 Single Source of Anomaly

Using the data described in section 5.3 (with ShipType as the only anomalous node), and
with T set automatically as the point of the ROC curve closest to (0,1), the CLA detected
nine of ten anomalies. In eight of these nine detected anomalies, the highest scoring op-
timised conflict set identified by the CLA optimiser contained the ShipType node. In all
but one of these cases, the explanation stage of the CLA correctly identified the subset of
the conflict set containing ShipType as the source of the anomaly. In five of these cases,
ShipType was identified as the sole anomaly, whilst in the other two cases it was identified
in conjunction with other variables. However, even when the actual anomaly was incor-
rectly reported as being anomalous in conjunction with other observations, the individual
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conflict score of each node against the remainder of the network showed ShipType to be
the most anomalous single node.

Figure 8 shows the explanation generated by the CLA for the highest scoring optimised
conflict for one of the anomalous cases in this network. The case was originally a tanker,
but we changed its type to ‘tug’ when generating the anomaly. As we can see, the CLA
has identified a conflict set of the ShipType node, as well as three neighbouring nodes,
ShipSize, Flag, and LongestCloseMyAvgLat, the average latitude of the ship in question
during its longest close interaction with another observed track (set to zero here, indicating
no such interactions). The CLA has identified that the values of these three nodes are
consistent with each other (with a conflict of −0.85 between them), and that the value of
‘tug’ for ShipType conflicts with this set. Certainly, it makes intuitive sense to us that a
tug boat in Sydney harbour which is large, flying a Singaporean flag, and not interacting
with any other ships should rightly be classified as an anomaly, and we see a large conflict
between these two sets. Lastly, the CLA identifies that the set of three observations is
consistent with the rest of the network, whereas the set containing only ShipType is in
conflict with the rest of the network, and reports that this is the most likely source of the
anomaly. Thus in this case (and others not shown here), the CLA has not only managed
to determine that this case is anomalous, it has managed to perfectly detect the individual
node responsible, and report that information back to a human operator.

Figure 8: Example of an anomaly explanation

6.2 Multiple Sources of Anomaly

Quantifying the performance of the explanation stage of the CLA here is far less straight-
forward than it is in the situation where we have a single anomaly, as we now have multiple
sources of anomaly spread across the network, some of which consist of more than one
anomalous node. We ran the explanation algorithm on all 40 anomalous tracks in the
dataset described in section 5.2, and looked at the conflict set with the greatest conflict
score for each. In 36 of these 40 cases, the subset identified by the algorithm as the source
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Figure 9: Example of a complex anomaly explanation

of the anomaly contained at least one actually anomalous node, with an average of 1.83
nodes in the attributed subset over these 36 cases. Furthermore in 21 of these cases, this
subset contained no wrongly identified non-anomalous nodes. However, when we used the
additional metric of individually checking the conflict of individual nodes in the conflict
set against the remainder of the network, the highest scoring node was an anomalous node
in all 36 cases.

Figure 9 shows an example of an anomaly explanation from a randomly selected case in
this dataset. Here, stops and straightPc are anomalous nodes, along with six other nodes
not included in this conflict set. We see that the explanation algorithm has accurately
partitioned the conflict set into the anomalous and non-anomalous nodes, and has correctly
labeled set A as the source of the anomaly. Note that both subsets have low internal
conflict, indicating that the anomalous nodes agree with each other, which is what we
would expect in the case of an actual anomaly, rather than simply garbled data. The
simulated anomaly was generated by swapping fields with a different entry in the data set,
so we would still expect this kind of internal consistency.

Figure 9 is a good example of a more complex anomaly explanation, though we note
that it does not include all anomalous nodes. As explained in section 3.2, the CLA
uses the structure of the network learned from non-anomalous cases, and can thus miss
relationships between anomalous nodes which did not exist when those nodes where non-
anomalous. It is important to note that when this structure exists (which it does here, as
all of the anomalies for a given case are generated together), the practice of scoring the
elements of the conflict set against the remainder of the network is drawn into question.
The demonstrated good performance of the explanation stage of the CLA in this dataset
indicates that this is only a concern where the number of anomalous nodes is very large
compared with the network.
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7 Conclusion

In this paper we have provided an overview of existing techniques in anomaly detection
and BNs, and introduced the motivation, underlying logic, and formal specification of the
CLA. We have explained the design decisions in creating the CLA, though we acknowl-
edge that further opportunities exist to improve its efficiency, an important consideration
when dealing with extremely large datasets. We have presented evidence supporting the
performance of the CLA as a classifier, showing it to be a significant improvement over the
existing techniques of joint probability and total conflict. Finally, we have demonstrated
and tested the unique ability of the CLA to determine the source of an anomaly, and to
report it back to a human operator.

We anticipate that the explanation stage of the CLA will be the primary focus of
future work on the topic. Generalisations to partitioning multiple differing sources of
conflict are a possibility, as well as the use of non-anomalous findings in order to report
‘expected values’ for these anomalous nodes, providing human operators with even more
information into the nature of an anomaly. Details of these techniques, also known as
abductive inference are given in [22, 18, 5]. We believe that the explanatory power of the
CLA provides a powerful and valuable tool for anomaly attribution, and look forward to
future work in the area.

20 UNCLASSIFIED



UNCLASSIFIED DSTO–TR–2975

References

1. Sakshi Babbar and Sanjay Chawla. On Bayesian network and outlier detection. In
COMAD, page 125, 2010.

2. Sakshi Babbar, Didi Surian, and Sanjay Chawla. A causal approach for mining in-
teresting anomalies. In Advances in Artificial Intelligence, pages 226–232. Springer,
2013.

3. Antonio Cansado and Alvaro Soto. Unsupervised anomaly detection in large databases
using Bayesian networks. Applied Artificial Intelligence, 22(4):309–330, 2008.

4. Giuseppe Cardillo. ROC curve: compute a Receiver Operating Characteristics curve,
2008. http://www.mathworks.com/matlabcentral/fileexchange/19950, accessed Jan
2014.

5. Urszula Chajewska and Joseph Y Halpern. Defining explanation in probabilistic sys-
tems. In Proceedings of the Thirteenth conference on Uncertainty in artificial intelli-
gence, pages 62–71. Morgan Kaufmann Publishers Inc., 1997.

6. Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: a survey.
ACM Computing Surveys (CSUR), 41(3):15, 2009.

7. Norsys Software Corporation. Netica 4.16. Accessed Nov 2013.

8. Eric Driver and Darryl Morrell. Implementation of continuous Bayesian networks using
sums of weighted Gaussians. In Proceedings of the Eleventh conference on Uncertainty
in artificial intelligence, pages 134–140. Morgan Kaufmann Publishers Inc., 1995.

9. Andrew Haldane. Why banks failed the stress test. BIS Review, 18:2009, 2009.

10. Finn Verner Jensen, Bo Chamberlain, Torsten Nordahl, and Frank Jensen. Analysis in
HUGIN of data conflict. In Proceedings of the Sixth Annual Conference on Uncertainty
in Artificial Intelligence, pages 519–528. Elsevier Science Inc., 1990.

11. Finn Verner Jensen and Thomas Dyhre Nielsen. Bayesian networks and decision
graphs. Springer, 2007.

12. Steffen L Lauritzen and David J Spiegelhalter. Local computations with probabilities
on graphical structures and their application to expert systems. Journal of the Royal
Statistical Society Series B (Methodological), pages 157–224, 1988.

13. Steven Mascaro, Kevin B Korb, and Ann E Nicholson. Learning abnormal vessel
behaviour from AIS data with Bayesian networks at two time scales. Tracks: A
Journal Of Artists’ Writings, 2010.

14. Steven Mascaro, Ann Nicholson, and Kevin Korb. Anomaly detection in vessel tracks
using Bayesian networks. International Journal of Approximate Reasoning, 2013. Sub-
mitted.

15. Brian W Matthews. Comparison of the predicted and observed secondary struc-
ture of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure,
405(2):442–451, 1975.

UNCLASSIFIED 21



DSTO–TR–2975 UNCLASSIFIED

16. Mr. Bayes and Mr. Price. An essay towards solving a problem in the doctrine of
chances by the late Rev. Mr. Bayes, FRS, communicated by Mr. Price in a letter to
John Canton, AMFRS. Philosophical Transactions (1683-1775), pages 370–418, 1763.

17. Richard E Neapolitan. Learning Bayesian networks. Pearson Prentice Hall, Upper
Saddle River, 2004.

18. Ulf Nielsen, Jean-Philippe Pellet, and André Elisseeff. Explanation trees for causal
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